Synthetic Grass Warehouse is proud to introduce TigerCool® Heat Reflective (HR) technology, the latest in artificial turf cooling improvements.

Created by Tencate, a worldwide innovator of space-age yarns for NASA and Boeing, TigerCool® yarns are engineered with heat reflective color pigments and advanced U.V. inhibitors that reduce surface temperatures. A series of solar panel tests indicate that artificial grass featuring TigerCool® technology successfully reduces turf temperatures by 30% and up to 17 degrees! That’s a difference that you can feel.

Don’t let the heat interfere with your life. TigerCool® makes any outdoor event a cool and pleasant experience. It’s perfect for any front yard, backyard, commercial property, public park, or municipality. Like all of our turf products, it’s safe for children and is pet friendly!

TigerCool® is now featured on the majority of our best-selling products. Our products are guaranteed to last while you cool your heels on our turf for years to come! Just look for the badge and experience the difference for yourself.

VISIBLE LIGHT IS WHAT WE SEE AS COLOR

SUN LIGHT

TURF BLADES ABSORB INVISIBLE INFRARED LIGHT, RAISING SURFACE TEMPERATURE

REFLECTED INFRARED LIGHT

ABSORBED INFRARED IS TRANSFORMED INTO HEAT.

CONVENTIONAL DARK COLORS ABSORB INFRARED CAUSING HIGH HEAT BUILUP.

PASTEL COLORS REFLECT INFRARED.

HEAT REFLECTIVE DARK COLORS REFLECT INFRARED LIGHT CAUSING DECREASE IN HEAT BUILUP
In order to achieve maximum temperature measurement accuracy and consistency, all comparative data were collected from 250 μm thick film samples instead of monofilament fibers or finished carpet.

The outdoor Solar spectrum is different from the spectrum of indoor IR lamps. Therefore, the temperature improvement due to Heat Reflective (HR) pigments over non-HR pigments, i.e. Samples over Controls, the indoor data is showing higher/better improvement than outdoor data. In addition, the outdoor data is influenced by wind, cloud cover and panel orientation with respect to the sun. Nevertheless, both indoor and outdoor data show the same trend:

Heat Resistance (HR) pigments have less temperature rise than non-HR pigments, 17.5 degrees F for indoor or 10.5 degrees F for outdoor exposure measurement. Re. Graph 1 and Graph 2

Graph 1: Temperature build-up vs. exposure time in Field Green Color Standard vs Field Green HR Formula. HR formulation Improvement vs Control at exposure temperature greater than 140° F.
Graph 2: Temperature build-up vs. exposure time in Field Green Color Standard vs Field Green HR Formula. HR formulation Improvement vs Control at exposure temperature greater than 140°F.

File: Summary of HR Improvement.xls; Summary of HR colors Chart 4